

Issues on fertility in 2020: from cradle to grave

Congenital anomalies related with fertility

Jun Nyung Lee

Department of Urology Kyungpook National University

Introduction

- Prevalence of infertility 15%
- Male-factor infertility
 20%–70% (m/c)
- Congenital / acquired diseases implicated in male infertility
 - identification and timely treatment
 - ✓ ↓ prevalence of male-factor infertility

Introduction

Male infertility causes

Congenital urogenital abnormalities

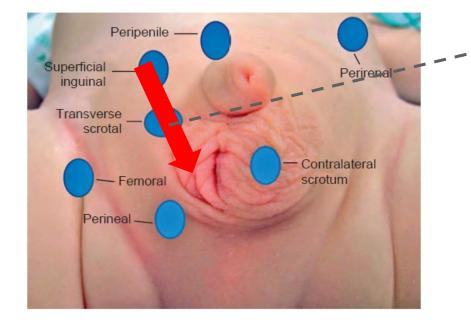
- Malignancies
- Urogenital tract infections
- Increased scrotal temperature (ex. varicocele)
- Endocrine disturbances
- Genetic abnormalities
- Immunological factors

EAU guideline

Contents

Undescended testis


- Hypospadias
- Hydrocele
- Posterior urethral valve



- Most common congenital abnormality of the male genitalia
- 1% of all full-term male infants at one year of age
- Wide range of presentations
 - ✓ varying impacts on testicular development and function
 - ✓ intra-abdominal vs intra-canalicular (inguinal)
 - bilateral vs unilateral

Abdomen → Scrotum
 Benefit?
 2~3°C drop

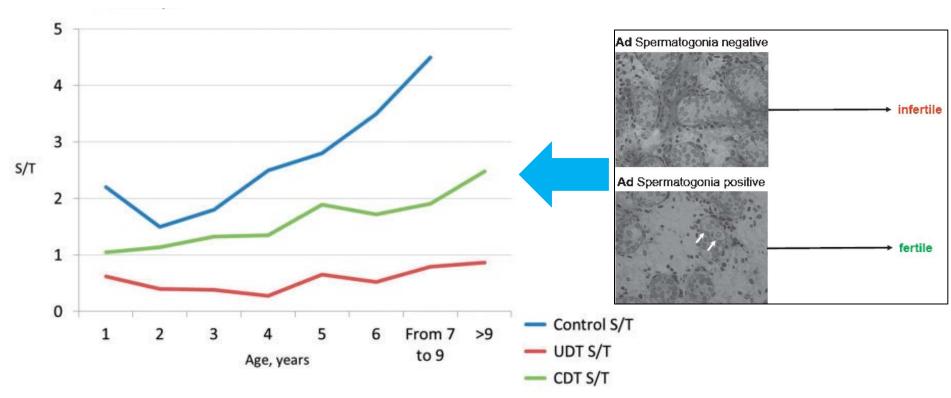
The small temperature difference between 33℃ and 36℃ is detrimental to normal spermatogenesis and fertility in the long-term.

Infertility risk

- > Unilateral vs General population
 > Bilateral vs Unilateral
 RR 3.5
- Bilateral vs General population RR 6.0

Azoospermia risk in cryptorchidism

- Untreated bilateral cryptorchidism 90%
 - Medically treated cryptorchidism 32%
 - Bilateral orchiopexy 46%
- Unilateral cryptorchidism regardless of correction 13%
- General population 0.4-0.5%

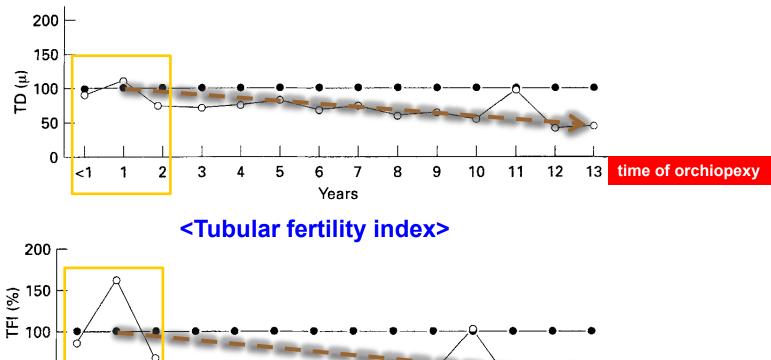


Contralateral side on unilateral UDT

<Age-dependent evolution of the median germ cell count>

✓ Unilateral cryptorchidism is a bilateral disease

Hadziselimovie F, et al. Klin Padiatr 2008 Verkauskas G, et al. Pediatr Dev Pathol 2019


KNIU

Pathological study in UDTs

<Tubular diameter>

Gracia J, et al. Br J Urol 1995

<1

Years

○, Cryptorchid (% of the control values).●, Control values [9].

time of orchiopexy

Location

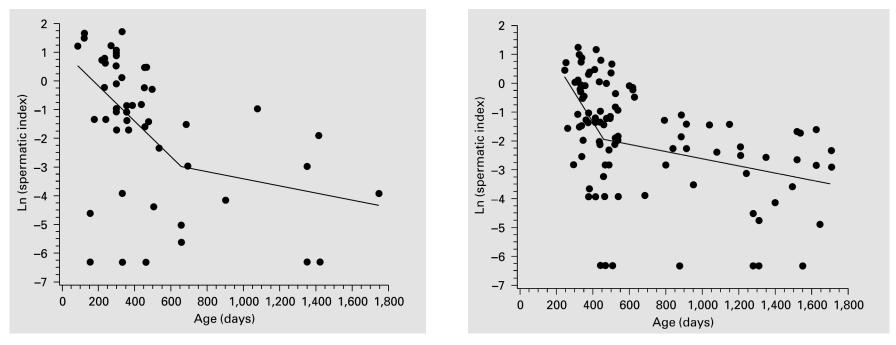
<Tubular diameter according Location>

Location	Mean	SD	No. of biopsies
Intra-abdominal	44.6	11.4	37
Canalicular	44.9	11.5	310
Below external ring	47.6	11.7	31
Ectopic	47.6	11.2	73

<Tubular fertility index according Location>

Location	Mean	SD	No. of biopsies
Intra-abdominal	23.9	30	71
Canalicular	38.3	37.4	894
Below external ring	36.1	35	72
Ectopic	38.7	33.6	138

✓ Location \uparrow → Tubular state \downarrow

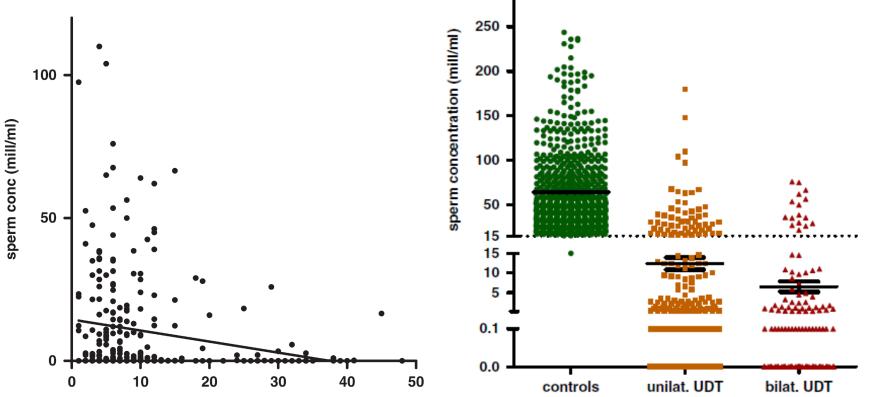


Early surgical tx & Fertility in UDT

<Intra-abdominal type>

<Intra-canalicular type>

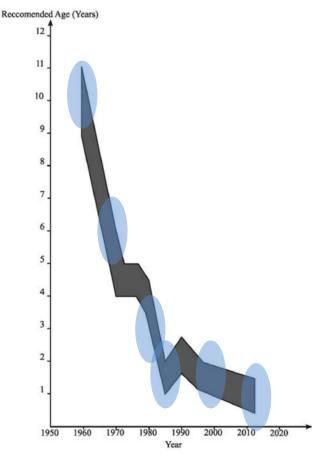
 The SI appears to reach a critically low value between 8 and 9 months of age, suggesting that surgical intervention would be appropriate before this time.



Age at –pexy / Bilat & Sperm conc.

357 adults with prev. UDT

age (years) at correction or persistence of UDT


Rohayem J, et al. Endocrine 2017

Timing of orchiopexy

- 1950s: 10-15 yr (suspended animation)
- 1970s: 5-6 yr (macroscopic atrophy)
- > 1970-80s: 2 yr (microscopic degeneration)
- > **1980s: 1 yr** (Early degeneration on EM)
- > 2000s: 12-18 months (germ cell count)
- Present: 6-12 months

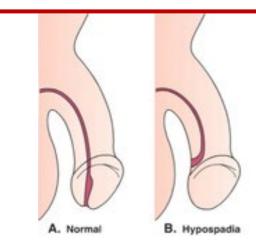
Paternity & Age at -pexy

Population based study in Australia

	Fathered children	Hazard ratio (95% CI)		
		Crude	Adjusted*	
All cohort (1970–99)				
Unaffected	107 006/341 000 (31·4%)	Ref (1∙00)	Ref (1∙00)	
Undescended testes	2016/7499 (26·9%)	0.72 (0.69–0.75)	0.79 (0.74–0.85)	
Age at orchidopexy				
Continuous†	109 471/350 835 (31·2%)	0.98 (0.98–0.99)	0.99 (0.98–0.99)	
<18 months	156/1202 (13.0%)	0.68 (0.58–0.80)	0.83 (0.70–0.98)	
18 months to 5 years	809/3208 (25·2%)	0.66 (0.62–0.71)	0.79 (0.71–0.87)	
🕂 6 to 20 years	1038/3049 (34.0%)	0.78 (0.74–0.83)	0.78 (0.69–0.88) 🦊	
Undescended testes‡	620/3288 (18.9%)	0.86 (0.79–0.93)	0.86 (0.79-0.93)	
Unilateral	519/2765 (18-8%)	0.87 (0.80–0.95)	0.84 (0.77-0.92)	
Bilateral	61/351 (17.4%)	0.75 (0.59-0.97)	0.58 (0.43-0.78)	

♦ Every 6 months increase in age at –pexy \rightarrow 1%↓ of paternity / 5%↑ of ART use

Schneuer FJ, et al. Lancet Child Adolesc Health 2018

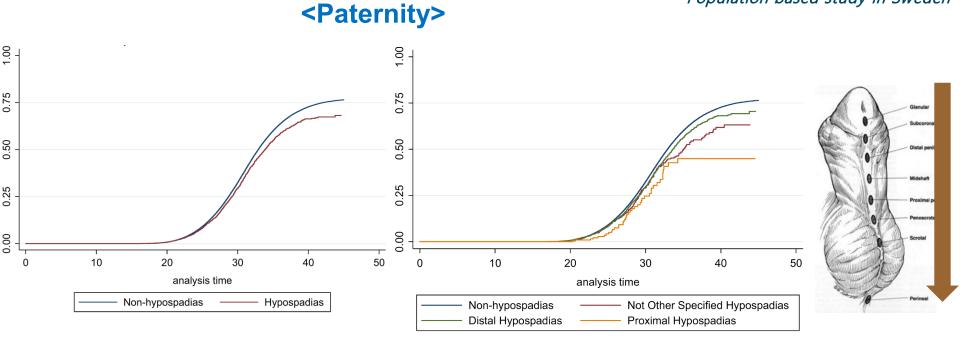

Hypospadias

- 0.3%–0.8% of live births
- Underlying testicular dysfunction in utero
 - → link between hypospadias and infertility?
- Cause of subfertility
- Anatomy itself of unrepaired isolated anterior hypospadias ?

Λ

- Presence of androgen receptor mutations / partial androgen insensitivity
- Concomitant genital abnormalities (cryptorchidism 18%)

Salonia A, et al. Nat Rev Dis Primers 2019 Nassau DE, et al. Fertil Steril 2020



Hypospadias

Population based study in Sweden

✓ Fertility in men with both distal and proximal hypospadias is impaired.

Nordenvall AS, et al. Andrology 2020

Hypospadias

Population based study in Australia

	Fathered children	Hazard ratio (95% CI)	
		Crude	Adjusted*
All cohort (1970–99)			
Unaffected	107006/341000(31.4%)	Ref (1·00)	Ref (1·00)
Hypospadias (all)	477/2484 (19·2%)	0.71 (0.65–0.77)	0.79 (0.71–0.89)
With repair	421/1941 (21·7%)	0.74 (0.68–0.82)	0.84 (0.74–0.95)
Undescended testes	2016/7499 (26·9%)	0.72 (0.69–0.75)	0.79 (0.74–0.85)
Age at orchidopexy			
Continuous†	109 471/350 835 (31·2%)	0.98 (0.98–0.99)	0.99 (0.98–0.99)
<18 months	156/1202 (13.0%)	0.68 (0.58–0.80)	0.83 (0.70–0.98)
18 months to 5 years	809/3208 (25·2%)	0.66 (0.62–0.71)	0.79 (0.71–0.87)
6 to 20 years	1038/3049 (34.0%)	0.78 (0.74–0.83)	0.78 (0.69–0.88)

✓ Hypospadias was associated with a 21% reduction in paternity.

Schneuer FJ, et al. Lancet Child Adolesc Health 2018

Hydrocele

Patency of processus vaginalis primary vs secondary

Indications for surgical correction

- concomitant inguinal hernia
- underlying testicular pathology
- symptoms (discomfort)
- parental anxiety / cosmesis
- persistent hydrocele > 12-18 months
- T damage?

Does hydrocele affect later fertility?

40 pts c hydrocele surgery, 3.2 yrs

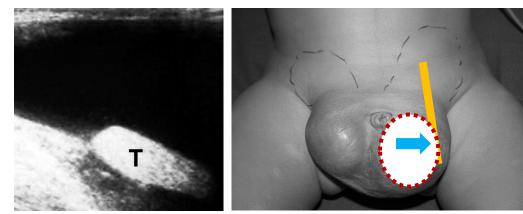
Testicular biopsy during surgery (n = 40)

Good prognosis for fertility 75% (30 pts)
 Marked reduction in spermatogonia count
 Poor prognosis for fertility 25% (10 pts)

Associated pathology

- ✓ 96.4% without associated pathology good prognosis group
- 75.0% with associated pathology poor prognosis group

	No. of pts
Cryptorchidism	3
Motor and mental retardation	2
Incarcerated hernia, same side	1
Testicular torsion	1
Varicocele	1
Testis/epididymis dissociation	1



Infantile abdominoscrotal hydrocele

Hypothesis

- → Partly obliterated processus vaginalis (valve-like mechanism)
- → Excessive scrotal swelling / pressure
- → Testicular dysmorphism (fusiform conf.)
- → Compression damage
- → Spermatogenesis ???

(partial / complete arrest of spermatogenesis *in adults*:18%)

Dandapat MC, et al. Cr J Surg 1990 Cozzi DA, et al. J Urol 2008

Posterior urethral valves

Studies	<i>P</i> (n)	SC (NR)	pH < 8	NV	AF (NR)	MP (>32%)	AA
Woodhouse et al. [52]	9	9 (100%)	4 (44%)	4 (44%)	9 (100%)	7 (78%)	0
Puri et al. [51]	5	5 (100%)	5(100%)	3 (60%)	_	0	4 (80%)
Lopez Pereira et al. [54]	6	5 (83%)	2 (33%)	6 (100%)	5 (83%)	5(83%)	0

- Semen counts normal in men with a history of PUV
- Potential obstacles to fertility
 - increased semen viscosity, pH, and liquefaction time
 - dilated posterior urethra (ejaculatory dysfunction)
 - chronic renal failure / undescended testes (12%)

Paternity rate in PUV

Population based study in Finland

<Men with children in different age groups>

Age group	General population	Patient cohort
20-29 years	14.9	2/15 (13.3%)
30-39 years	56.0	10/21 (47.6%)
40-49 years	72.2	17/22 (77.3%)
50-59 years	77.2	3/8 (37.5%)

Comparable fertility in PUV compared with age-matched healthy men.

Summary

- Undescended testis
 - > Testicular damage via depletion of germ cells (Temp / Ad sperm)
 - Early surgery for fertility preservation
- Hypospadias
 - > Testicular dysgenesis and sexual / ejaculatory dysfunction
 - > Identify and treat any concurrent risks for infertility
- Hydrocele, Posterior urethral valve
 - Comparable fertility
 - Concurrent testicular pathology

Thank you for your attention !

